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ABSTRACT 

The purpose of this paper is to give an alternative proof to the 

decidability of the emptiness problem for tree automata, as shown in 

Rabin [4].  The proof reduces the emptiness problem for automata on 

infinite trees to that for automata on finite trees, by showing that 

any automata definable set of infinite trees must contain a finitely- 

generable tree. 



Section 1:  Introduction 

The analysis of finite automata on infinite trees is the basis for 

Rabin's remarkable proof of the decidability of S2S (the monadic second- 

order theory of two successors) [5].  Rabin's proof follows the now 

standard form of Buchi and Elgot's proof for WSlS (weak, single successor) 

[1, 3] and Thatcher-Wright's proof for weak S2S, and requires demonstrating 

effectively that the automata are closed under union, projection, and 

negation, and that the emptiness problem for the automata is decidable. 

As in the case of SIS, the main technical difficulty in the case of S2S 

lies in proving closure under complementation of sets accepted by non- 

deterministic automata on infinite trees.  The problem is complicated by 

the fact that nondeterministic infinite tree automata are known not to 

be equivalent to any of the likely definitions of deterministic infinite 

tree automata. 

Curiously, the emptiness problem, which is easy for the other kinds 

of automata, turns out to be nontrivial for (nondeterministic) infinite 

tree automata.  Rabin subsequently improved his original proof of the 

decidability of this emptiness problem, but even the second proof [4] 

used an involved induction and consequently does not yield a simple 

effective criterion for deciding emptiness. 

In this paper we provide such a criterion by showing that an 

infinite tree automaton accepts some valued tree if and only if there 

is a computation of the automaton containing a certain simple kind of 

finite subtree.  Moreover, the set of finite subtrees of the kind we 
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require are recognizable by finite tree automata, and in this way we 

reduce the emptiness problem for Infinite tree automata directly to that 

for finite tree automata. This also yields a simpler proof of another result 

of Rabin about "regular" runs by automata (see below). 

The hardest part of Rabin's proof — the complementation lemma -- 

remains a difficult combinatorial argument which has yet to be simplified. 

Reducing this problem to the corresponding problem of complementiiig 

finite-tree automata (which is easily resolved by the usual subset 

construction) might lead to such a simplification.  Our results on 

emptiness suggest that there is hope for this approach. 

Section 2: 

For this paper the appropriate way to visualize the infinite binary 

tree T is as follows. At the top is the root ZV  Every x € T has a 

left son xO and a right son xl.  Hence, T = (0,1} . 

/0\ /\ 
00     01     10     11 

/ \ / \. / \ / \ 

We define a partial ordering on T by x ^ y (x is an initial of y) 

if y = xz for some z € {0,1) . If x < y and x ^ y, then we will write 

x < y. 



A path rr of T is a set rr c T satisfying 1) A6 TT; 2) for y € TT, 

either yO 6 TT >r yl t TT, but not both; 3) TT is a minimal subset of T 

satisfying 1 2nd 2, 

Definition: If for some path TT, X € TT and y G TT, then we denote by 

[x,y] the set {w|x s w ^ y). Note that when y < x, [x,y] = 0. 

For a set B we denote the cardinality of B by c(B), 

Definition: A set B c T is called e frontier of T if for every path 

n c T we have c(Tr fl B) = 1. By König's Lemma every frontier is finite. 

A finite tree is a set E = {y|y <: w, for some w € B}, where B is a fixed 

frontier of T.  For E as above, B is called the frontier of E and is 

denoted by Ft(E). 

Definition: A 2-tree is a pair (v,T) such that v: T -+ E. A finite 

5-tree is a pair (v,E) such that v: E -» D, where E is a finite tree. 

Definition: For a mapping 6: A -► B.  In (9) = {b(c(e"1(b)) :>u/}. 

Definition: Let 0: A -► B and lat H = ((L., u.))1 ^ i ^  be a sequence 

of pairs of finite sets. We say that 9 is of type &,  denoted by 

9 € [nj, if for some i, 1 ^ i <: n, we have In(9) D L. = 0 and In(e) D QJ ^ 0, 

Definition: AtJ f-a-t. is a system^!- < S, L, M, s0,Il>, where S is a 

finite set of states. 2 is a finite set, M: S x S -> P(S x S), s € S is 

the initial state, and .Q = ((L,,U.))n 
1  1 1 £ i £ n 
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If t -  (v,T)   is a 2>tree,   then anOT-run on t^ is any mapping r:  T -» S 

such that: 

1) rCA) = s0,  and 

2) for all y € T, 

(r(yO),  r(yl))  €M(r(y),  v(y)). 

If e = (v,E) is a finite L-tree, then an 0?-run on e is any napping 

r: E -► S such that: 

1) r(A) = s0, and 

2) for all y € E - Ft(E), 

(r(yO), r(yl)) € M(r(y), v(y)). 

The set of all ^-runs on t(e) will be denoted by Rnflfct) (Rn(^,e), respectively), 

An accepting Qf-run on t is any r € Rn(0r, t) such that for every path 

TT c T, (r|Tr) € &.].    7(0i)  = {t| there is an accepting ÖJ-run on t). T(R) 

is called the set defined by Ol. 

Given an f.a.t. 01= < S, E, M, s0,^l> we wish to determine whether 

or not T(ft) = 0. Consider the automaton 01= < S, {a], M, sn,il>, where 

for all s € S, M(s,a) = (J  M(S,CT). Clearly, T(öO = 0 iff T(Ö?) = 0. 

Thus the emptiness problem is reduced to the case of automata over 

the single letter alphabet {a}. Henceforth we restrict our attention to 

this case. Since there exists just one {a]-tree, (v,T), and for every finite 

tree E just one finite {a]-tree, (v,E ), we will omit mention of the 

valuation v and talk about Ol-runs  on T and E, ^accepting T, etc. 
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Theorem 1:  LetOl= < S, (a), M, s., ((L., V^)     . - ^  > be an f.a.t. 

T(öl) ^ 0 ** for some finite tree E there exists an r such that 

1) rCRn^E), 

2) there exist mappings J: Ft(E) -♦ E-Ft(E) and H: Ft(E) -» 

E-Ft(E) such that for all x € Ft(E) 

a) H(x) ^ J(x) < x, 

b) r(J(x)) = r(x), 

c) r([H(x), J(x)]) = r([J(x), x]), 

u)  for some i, 1 <: i <: n, r([J(x), x]) Pi L. = 0 end r(x) 6 t!?.. 

Before we prove Theorem 1, we show that Theorem 1  easily yields the 

following theorem. 

Theorem 2; The emptiness problem for f.a.t.'s Is decidable. 

Proof of Theorem 2:  Let 01  be as in the statement of Theorem 1. 

Definition; Let E be a tree (finite or infinite). Let r be an Ol-run 

* 
on E. Let x € E.  Since x € fO.ll we can write x = a-CT- ... cr . Define J 12m 

it 
a        to be the following member of S :  a   = r(^,r(o,

1)»r(a1o
,
9).. .r(x), 

Notation;  Let a be a string.  Let n and m be positive integers, n ^ m. 

Then by a(n) we will mean the nth element (from the left) of a.    By 

a([n,m]) we will mean the set of elements between and including the nth 

and the mth places of a. 



Definition: Let a 6 S*. We say that a  is Good if there exist positive 

integers H and J such that H <: J < N = length(a), a(J)  - a(N), a([H,J]) = 

a([J,Nl), and there exists an i such that a(N) € U. and a([J,N]) fl L. = 0. 

Note that good is defined with respect to our f.a.t. 01. 

LrannaJ.: The set of good strings is a regular set, i.e., it is 

recognizable by a finite state machine on finite input strings. 

Proof of Lemma 1; ühvious.   D 

Lemma_2: Let G be a regular set of finite strings on S.  Let H = 

{E(E is a finite free and there exists a run r on E such that for all 

x € Ft(E), ar^  € G} Then H is recognizable by a finite automaton on 

finite trees as defined in [6]. 

Proof of Lemma 2: Fairly obvious.  D 

Completion of proof of Theorem 2; By Theorem 1, Lemma 1, and Lemma 2, 

the emptiness problem for Ol can be reduced to the emptiness problem 

for a particular finite automaton on finite treeü. But by Theorem 7 in 

[6], this problem is decidable. 

Proof of => in Theorem 1; Let r be an accepting Ol-run  on T. By the 

definition of accepting run and of good string, it is clear that for 

every path TT of T there exists an x, x € n, such that a        is a good 
r ,x 

string. Let B = (x[a^x is good and for all y < x, a   isn't good}. 

Then B is a frontier. If we let E be the finite tree with frontier B, 

then there exist mappings J and H which, together with rlE, satisfy 

conditions 1 and 2 of Theorem 1. This completes the proof of =>. 
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Proof of^ in Theorem 1:  Let E, r, J and H be as specified In 1) and 

2) of Theorem 1. 

We define, a mapping r\:    T -» E inductively as follows.  Let r\(^)  = A. 

If TKx) has been defined, then for a € (0,1), define TKXO) as follows. 

Case 1;  If "HW e E - Ft(E), then let TI(XCT) = Ti(x)»CT. 

Case_2:  If n(x) € Ft(E), then let TI(XCT) = J(TI(X))»CT. 

Define r: T -► S by r(x) = r(Ti(x)), for all x € T.  Clearly by 2) 

b) of Theorem 1, r £  Rn(^, T) so that it suffices to show that for all 

paths TTC T, (r j TT) € [Ü], because then T 6 T^) and hence T(q) 4 0. 

Let TT c T be a specific path.  Let y0, y^ y^   ... be the infinite 

subset of TT (listed in increasing order under S) consisting of exactly 

those members of TT whose images under n are in Ft(E).  Define V to be 
TT 

the following Infinite sequence of members of Ft(E) X Ft(E): 

VTT= (Tl(y0), TKyj)), (TKy^, Ttfy.,)), (r|(y2), T)^)), ... 

For all 1 <W we hstve by the definition of r\t  J(Ti(y )) < rKy.     ) 

and ^[y^ y^])  = r( [JCpCy^),  r^y^)]).    Hence,   In(f   | n)  = 

U r([J(x),  z]). 
(x,z)  e in(V ) 

TT 

Clearly there exists a finite sequence (possibly with repetition) 

of members of Ft(E), Xj, x2, x3 x , such that 
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x, = x and 
1   m 

(I) InCV^) = {(x^ x2), (x2, x3), (x3, x4) 

(xm-l' O)- m 

Fi.om now on we will denote J(x ) by J and H(x ) by H • for all 

1 s 1 $ m. 

We have from the preceding paragraph 

for all 1 £ i < m, J < x  , 

(ID , m-1 
and In(r I TT) =  (J  r( [J^ xi+1j) 

(r | n) 6 [fl] is immediate from the third of the following three 

lemmas. 

Lemma 3;  There exists an M, 1 s M s m, such that for all i, 1 <: i <: m, 

That is, 1^ = minfH^ ..., H }. 

Proof: Our induction 

hypothesis at stage h is that there exists an integer M', 1 s M' ^ h, 

such that for all 1, 1 « 1 « h, IL., S H.. Clearly the basis case is 

trivial. We assume the induction hypothesis for h and prove it for h^l. 
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lUji ^ Hh    , by the induction hypothesis. 

HL ^ J by 2) a) in Theorem 1. 

J.  < Vi    ■ by (II) 

Hence. 1^, < x^. 

By 2) a) of Theorem 1 we also have Hh+1 < x.^.  Therefore, H and 

\+l  are comParable (under <:). Clearly for all i, 1 s i s h+1, 

sis%" Vi^ Hi- n 
If M ^ m, we can rename x-, *2,   ..., x    so that (I) and (II) remain 

true and H^ = minfH1 H }. Henceforth, without loss of generality 

we assume that M = m. 

Lemma 4;  If Hm = minfH.. ..., H ), then for all i, 1 <: i <: (m-1), 

r([Hin. xi+1])=r([Hm, xj). 

Proof: Let i be any integer such that l^i<m. H ^H sj <x ,. 
m   i   i   i+1' 

hence we have the picture: 

i+1 
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Hence,  r([Hm, xi+1]) 2 r([Hm, H.])  U r([H1,  J^).    By 2)  c)  of Theorem 1, 

rC^,  JJ)  = r([Ji,  x1]).    Hence,  r([Hm, xi+1]) 2 rCfJ^  x  )),  and 

therefore, r([Hm,  x1+1]) 2 r([Hm, x^). 

Lemma 5;     If H    = inin{H1,   ..., H },   then for all i,   1 <: i <; (m-1), 

r([Hm.  xm])2r([Ji.  x^]). 

Proof:    Let i be any integer such that  1 ^ i s  (m-1). 

By Lemma 4 r^. xj) 2 r^. x^]).  r([Hm, x^^) 2 r([Hm, x^]) 

••"  r([Hm'  Xi+23) 2 r([Hm' Xi+1])-    Hence'  r([Hm'  Xm]) = r(tHm'  Xi+1^- 

We have H    ^ H    < j#  < x That is  the picture: 
mil i+l r 

H 
m 

?i 

J. 
i 

Xi+1 

Hence, rHm. x^] 2 r^, x^]. Hence r([Hm> xj) 2 r^, x.^j). 

Completion of the Proof of Theorem 1: Without loss of generality we 

assume H = minfH., ..., K }.  By Lemma 5, 
m 1      mJ ' 

m-1 
r([H , x j) 2  U  r([J., x.^.]). 

m  m      .     i' i+lJ/ 

By part 2) d)  of Theorem 1 we have for some i, 1 £ i s n, r([J , x ] O 
m      m 

L.   = 0 and r(x )  € U  .     By part 2)  c)  of Theorem 1,  r([H ,  x  ])  = 

r([J  .  x  ]).    Hence, mm 



and 
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m-1 

.^ r(tJi' Xi+l
])nLi=0' 

m-1 

u   r([jit x1+1]) n^ ^ 0. 

Therefore, by (II) (r | TT) 6 [n]. 

D 
Section 3: Remarks 

In fS] Rabin uses ths following definition. 

Definition; An f.a.t. with designated subsets is a system Ol = 

<  S, E, M, s0, ? >, where S is a finite set of states. E is a finite 

set, M:  S X S -» P(S X S), and ^ c p(S) ls the set of designated subsets. 

An Cl-rm  on t = (v,T) is as defined in Section 2. Ol accepts t if 

there exists an r e Rn(#,t) such that for all paths TT c T, In(r | n) € ?. 

The proof of Theorem 1 can be extended to show that r([H , x ]) = 
m  m 

m-1 

U ^([J^ xi+1]). where H , x , etc. are as in the proof of Theorem 1. 

Hence for 0l= < S, {a}, M, s0, ? >, where c(S) = q, we have: 

T(0|) ^ 0 « for some finite tree E there exists an r such that 

1) r€Rn(Ol,E), 

2) there exist mappings J:  Ft(E) -♦ E-Ft(E) and H; Ft(E) -» E-Ft(E) 

such that 

a) H(x) s: j(x) < x, 

b) r(J(x)) = r(x), 

c) r([H(x), J(x)]) = r([J(x), x]), 

d) r([J(x), x]) 6 y. 
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The appropriate definition of a good string with respect to 01 

is a simple modification of the definition of good striug used in the proof 

of Theorem 2.  For either definition of good string we can design a non- 

deterministic finite automaton on finite strings, W, which recognizes 

the set of good strings and which has at most 2 nq+1) states.  By the 

subset construction we can design a deterministic automaton W  equivalent 

to TO such that W  has at most Q = 2  ^    >  states.  Using W  we can 

easily construct a finite automaton on finite trees, (TV, such that TCOl') 

^ 0 if and only if 1(00  4 0  and such that the state set of 0V is the 

cross product of the state sets of ^f and W .    Hence ^71' has at most qQ 

3 
. states.  We can determine whether T(Oi') ^ 0 in (q Q)  computational 

steps. 

Hence given a finite automaton Ol on infinite trees which has q 

states and uses either notion of acceptance, we can determine whether or 

not T(Of) ^0in   Vl2  ^    '   J computational steps. 

Remark 2;  If we have a finite L-tree (v,E), and a function J: Ft(E) -» 

E-Ft(E) such that for all x € Ft(E), v(J(x)) = v(x), then we can 

generate a unique E-tree (v,T) as in the proof of Theorem 1.  Call any 

E-tree which can be generated in this way a finitely-generable ID-tree. 
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Rabin in [4] defines a S-tree, (v,T), to be regular if and only 

if for each CT € S, v (a) is a regular subset of {0,1} .  It is easily 

shown that a E-tree is fiiiitely-generable if and only if it is regular. 

Remark 3;  From Theorem 1 it is easily shown that if an f.a.t. accepts 

any S-tree, then it accepts a finitely-generable S-tree.  Rabin shows 

this in [4].  In [21 Buchi and Landweber prove that if P(X,Y) is a 

finite-state condition and X has a winning strategy, then X has a winning 

finite-state strategy. Rabin and Rackoff have independently observed 

that the set of winning strategies for X corresponds in a natural way 

to a set of (0,1}-trees defined by a (deterministic) infinite tree 

automaton. Hence, it easily follows from Rabin's result in [4] or from 

the results in this paper that if X has a winning strategy then X has a 

winning finite-state strategy. 

C. Rackoff has observed the following.  If X does not have a winning 

strategy, then by our Theorem 1 we see that X does not have a "partial" 

strategy of a particular kind.  From this one can show that Y has a 

winning strategy for P(X,Y), thus showing that P(X,Y) is determined. 

This is another result of [2]. 

We thank Albert Meyer for his assistance in writing this paper and 

for pointing out the relevance of finite tree automata to our work. 
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